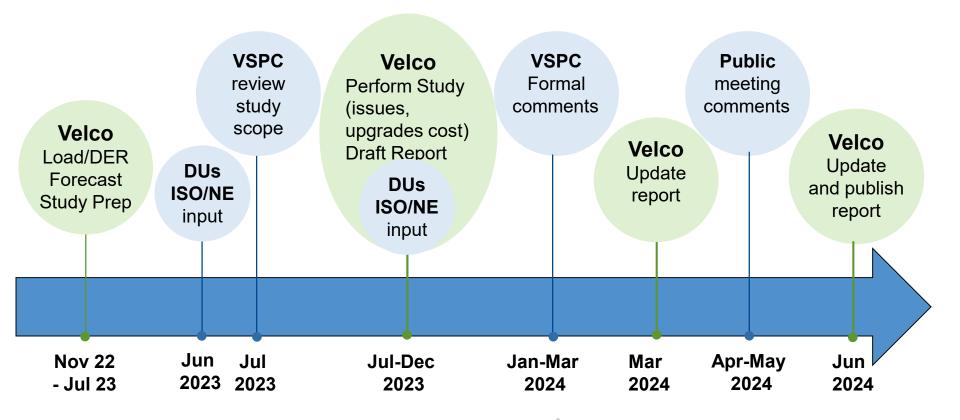
2024 Vermont Long Range Transmission Plan

vermont electric power company


January 24, 2024
VELCO/VSPC planning meeting

Outline

- Study Plan
 - LRP Milestones
 - Data Inputs
 - Scenarios
- Study Results
- Next Steps

LRP Milestones

Review and discuss results with VSPC

Data Inputs

- Itron
 - Load forecast based on existing and expected trends, policies
 - HP, EV, PV
- Distribution utilities (DU) and the Public Service Department (PSD)
 - Distributed generation (DG)
 - installed/proposed by fuel type
 - Aggregated by distribution substation
 - Distribution substations
 - Transformer voltage levels and rating
 - "Not to exceed" limits on generation
 - Resource plans
 - EV chargers and other controllable loads
 - distributed or grid-scale storage
- ISO/NE
 - Load flow cases and associated files
 - Contingency scenarios

Scenarios

- Peak Load
 - Policy/expected, Low
 - Summer, Winter
 - -2033, 2043
- Spring Daytime Load
 - Low load
 - DER 500 1300 in 100 MW increments (Tier II Standard)
 - Other BTM generation resources at full capacity

RESULTS POLICY SCENARIO

Study Results – Policy

VT Overloaded Facilities – Peak Policy N-1

	2033	2043	
Overloaded Transformers	Number of Violations	Number of Violations	NTA in 2033
QUEEN CITY 115/34.5 kV	7	13	95 MW
ASCUTNEY 115/46 kV	1	8	Shed load
ST ALBANS 115/34.5 kV	7	8	Rerate
BARRE 115/34.5 kV	-	5	
WINDSOR 115/46 kV	-	13	
NORTH RUTLND 115/46 kV	-	5	
BENNINGTON 115/46 kV	-	6	

No transmission line overloads for N-1

Study Results – Policy

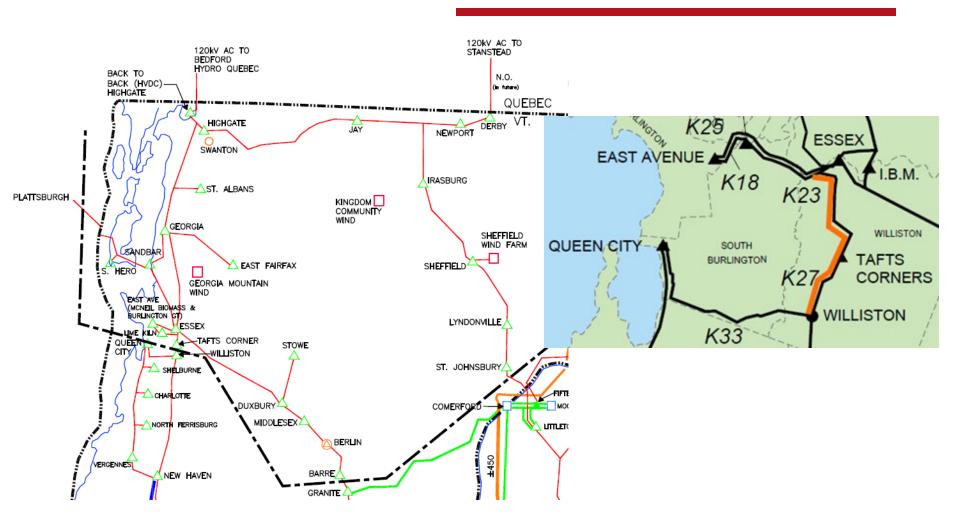
VT Overloaded T/L – Peak Policy N-1-1

	2033	2043
Line	Number of violations	Number of violations
Line 1	-	41
Line 2	-	22
Line 3	-	12
Line 4	-	8
Line 5	-	4
Line 6	-	4
Line 7	-	2
Line 8	-	2

Total length of overloaded lines: 75 miles

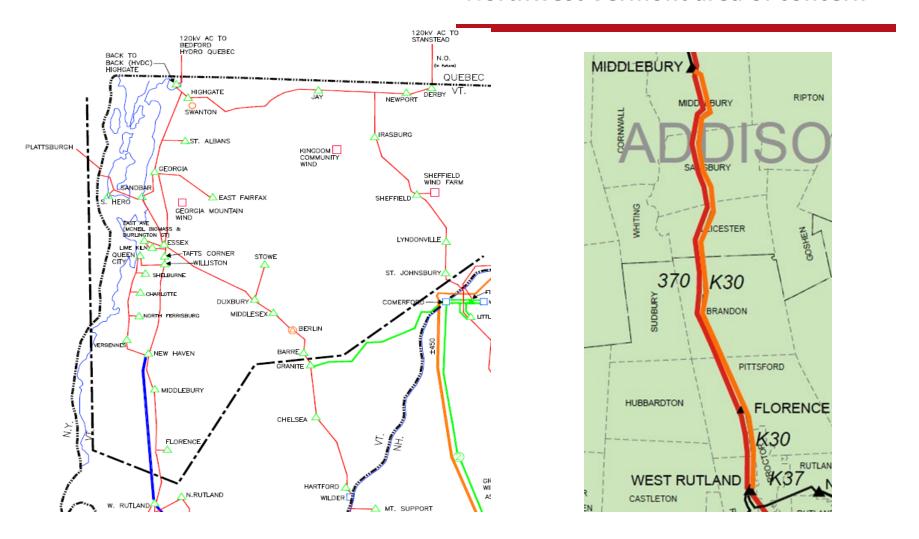
Study Results – Policy

Overloaded Subtransmission – Policy Peak N-1 and N-1-1

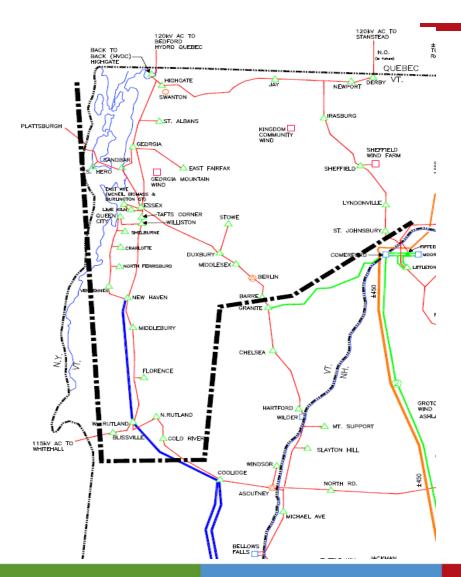

Summary

			N-1	N-1-1		
Year		2033	2043	2033	2043	
Sub-transmission Transformers		1	1	1	1	
Total length of	overload >100%	23	92	185	323	
overloaded lines (miles)	overload >=110%	15	45	127	262	

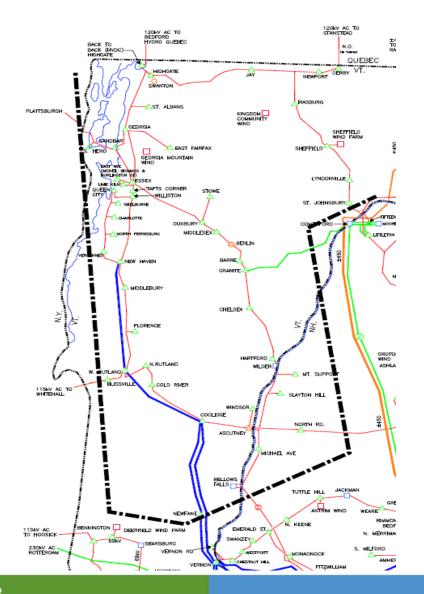
Assumed overloaded subtransmission lines would trip – caused or aggravated overloads on transmission facilities

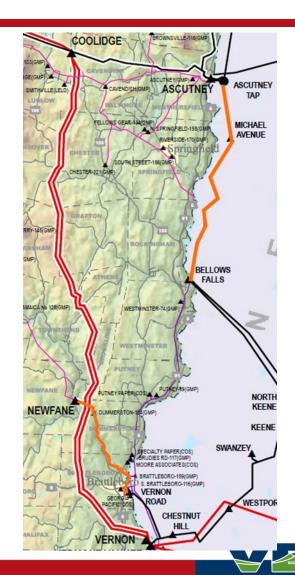


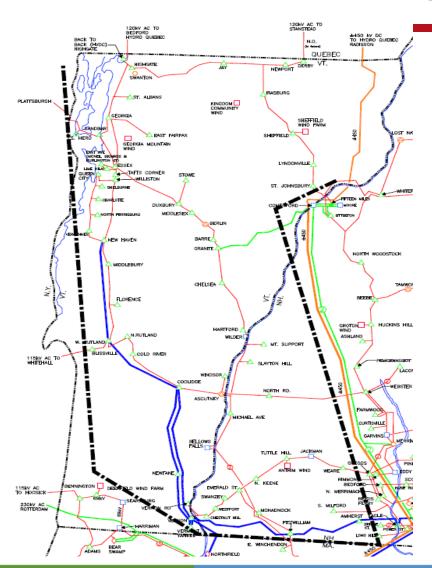
Northern Vermont area of concern



Northwest Vermont area of concern

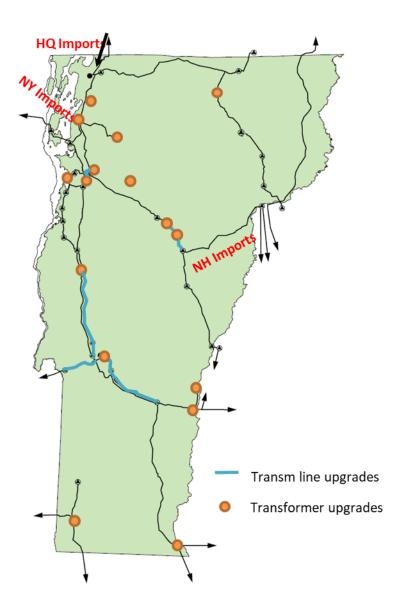

Central Vermont area of concern





Southern Vermont area of concern

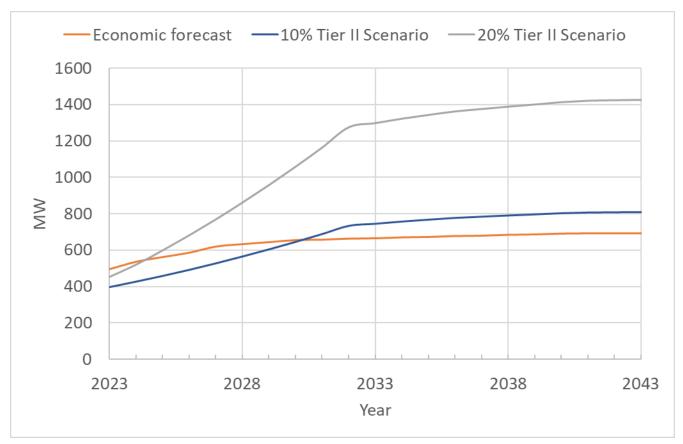
Vermont area of concern


Bulk System result summary – Policy Scenario

Summary of bulk system Regional grouping & Transmission solutions	LEAD & AFFECTED DISTRIBUTION UTILITIES	ESTIMATED TRANSMISSION PROJECT COST	SCREENED IN OR OUT OF FULL NTA ANALYSIS
Northern area	Lead: GMP		In
Install a new 115 kV line between Essex and Williston	Affected: All VT	\$100M	75 MW of load
N-1-1 contingency causing overload & voltage collapse exposure			reduction in northern
Affected transformers: Queen City, Tafts Corner, Barre		Three X \$11M	area by 2033
Need date is 2032 based on winter expected forecast			Grows over time
Northwest area – includes northern area	Lead: GMP		In
 Rebuild West Rutland to Middlebury 115 kV line 	Affected: All VT	\$215M	80 MW of load
 N-1-1 contingency causing thermal overload 			reduction in northwest
Affected transformer: Middlebury		\$13M	area by 2033
 Need date is 2029 based on summer expected forecast 			Grows over time
Central area – includes northwest area	Lead: GMP		In
 Rebuild Coolidge - Cold River - North Rutland 115 kV line 	Affected: All VT	\$185M	Keep load below 2033
 N-1-1 contingency causing thermal overload 			load level in central
 Affected transformers: North Rutland, Cold River, Windsor 		Three X \$13M	area
 Need date is 2034 based on summer expected forecast 			Grows over time
Southern area – includes central area	Lead: GMP	No VELCO estimate	In
 Rebuild NGRID Bellows Falls-Ascutney Tap 115 kV line and GMP 	Affected: All VT,		Keep load below 2033
Vernon Road to Newfane 46 kV	NGRID		load level in southern
 N-1-1 contingency causing thermal overload 			area
 Affected transformer: GMP Vernon Road 115/46 kV 			Grows over time
 Need date is 2034 based on summer expected forecast 			
State of Vermont	Lead: GMP	\$5M for	In
• Install new 345 kV line between Vernon & Eversource Northfield, MA	Affected: All VT,	VELCO portion	Keep load below 2033
 N-1-1 contingency causing thermal overload 	Eversource		load level in Vermont
Affected transformers: Bennington		\$13M	Grows over time
 Need date is 2034 based on summer expected forecast 			

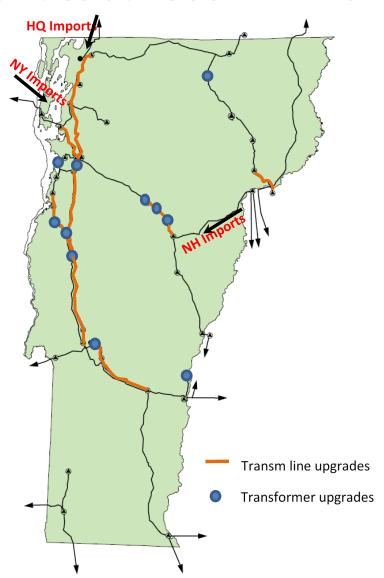
Policy Scenario 2043

- 75 miles length of overloaded lines
- 19 overloaded transformers
- 55K contingency scenarios studied
 - West Rutland- Florence 115 kV path overloads in 40 scenarios
 - Queen City 115 /34.5 kV transformer overload in 126 scenarios
- Total upgrades cost: \$840M



PV HOSTING CAPACITY

Solar PV forecast



<u>Vermont Renewable Energy Standard, Tier II – Distributed Renewable Generation</u>

Overloaded Transmission Facilities at 1300 MW DG

- 156 miles length of overloaded lines
- 10 overloaded transformers
- 1200 contingency scenarios studied
 - Essex- Tafts Corner- Willingston 115
 kV path overloads in 200+ scenarios
 - Vergennes 115 /34.5 kV transformer overload in 61 scenarios
- Total upgrades cost: \$1400M

LOAD CONTROL:

(GENERATION/STORAGE/ DEMAND RESPONSE)

Load reductions to address peak load issues

Policy Peak N-1-1, 2043 Winter

Load Reduction^(*) in MW

	Load Reduction
Location	(MW)
COLD RIVER	60
QUEEN CITY	55
VERNON ROAD	30
MCNEIL	26
EAST FAIRFAX	25
WINDSOR	25
IRASBURG	20
DORSET	15
STRATTON	15
BARRE	10
DIGITAL	10
KENDALL FARM	10
MIDDLEBERRY	10
SNOWSHED	10
ESSEX	9
SHELBURNE	9
MTN VIEW	8
SOUTH END	8

Location	Load Reduction (MW)
MANCHESTER	7
MILTON	7
E RUTLAND	6
ETHAN ALLEN	6
MALLETS BAY	6
NASON STREET	6
TAFTS CORNER	6
EAST AVENUE	5
LAFAYETTE	5
SAND ROAD	5
TOWNLINE	5
CHARLOTTE	4
E ST ALBANS	4
BETHEL	3
IROQUOIS	3
BRANDON	2
HINESBRG	2
RICHMOND	2

^(*) this could be demand response, load reduction, DER, Battery production, Microgrid solutions etc...

Load reductions to address peak load issues

Policy Peak N-1-1, 2043

Total Load Reduction^(*) Needed in MW

	Winter Peak	Summer Peak
GMP	394	365
VEC	20	10
BED	25	25
Total	439	400

(*) this could be demand response, load reduction, DER, Battery production, Microgrid solutions etc...

Load additions to address excess DG issues

PV Hosting Capacity (DER=1300MW)

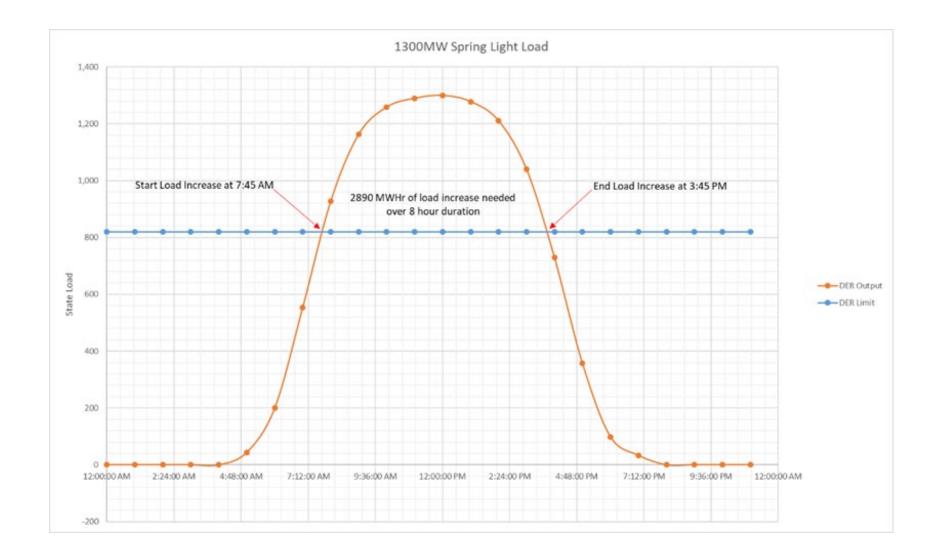
Load Increase in MW^(*)

Location	Voltage	Load Increase in MW
HIGHGATE	115	60
SANDBAR	115	60
ESSEX	115	50
GEORGIA	34.5	50
EAST FAIRFAX	34.5	35
NASON	34.5	30
IRASBURG	46	20
WINDSOR	46	15
NEW HAVEN	46	15
VERGENNES	34.5	15
ST JOHNSBURY	34.5	15
MIDDLESEX	34.5	15
STOWE	34.5	15
SHEFIELD WND	34.5	15
EAST AVENUE	34.5	15
TAFTS CORNER	12.5	15
COLD RIVER	46	10
MIDDLEBURY	46	10
BARRE	34.5	10
CHARLOTTE	12.5	10

^(*) Solution could be energy storage, generation curtailment, demand response, etc...

Load additions to address excess DG issues

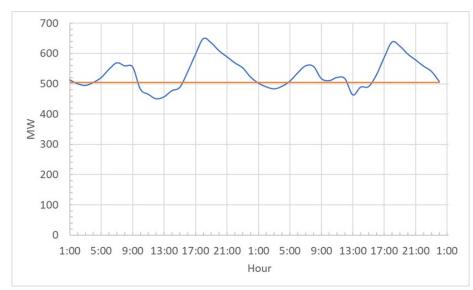
PV Hosting Capacity (DER=1300MW)


Total Load Increase in MW^(*)

	Load Increase (MW)			
VELCO	125			
GMP	250			
VEC	70			
BED	20			
STOWE	15			
Total	480			

^(*) Solution could be energy storage, generation curtailment, demand response, etc...

The details matter

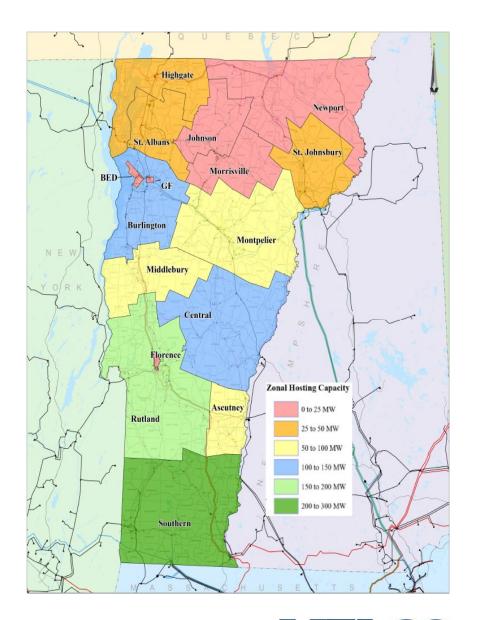


The details matter – 2043 example

State wide load control

1800 1600 1400 1200 800 600 400 200 0 1:00 5:00 9:00 13:00 17:00 21:00 1:00 5:00 9:00 13:00 17:00 21:00 1:00 Hour

Entire Load control in northern area


Orange line is the critical load level over which a violation occurs

OPTIMIZED SOLAR DG

- Used operational limits and solar DG location
- Maximum solar DG
 - 1175 MW (considering Transmission)
 - 1052 MW (considering Transmission and subtransmission

UTILITY	INSTALLED SOLAR PV AS OF 2023 ¹ (MW)	Additional solar PV (MW)	OPTIMIZED SOLAR PV DISTRIBUTION (MW)
BED	9	0	9
GMP	404	525	929
VEC	34	34	68
VPPSA	26	6	32
SED	3	0	3
WEC	6	6	12
TOTALS	482	571	1053

Next Steps

- VSPC to provide comments 60 days after receiving draft plan
- Discuss with affected parties
- Schedule

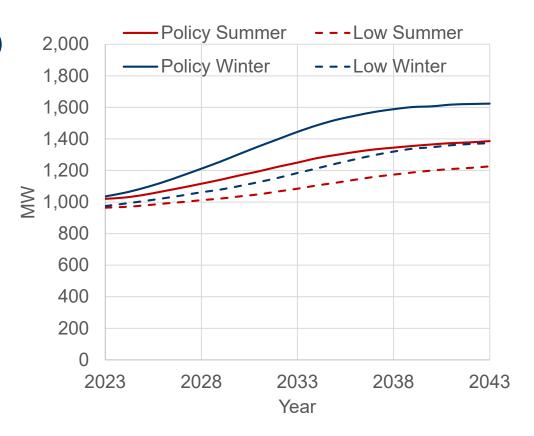
February 2, 2024	VSPC to receive draft plan
February 16, 2024 10am -11am	VSPC Q&A Webinar
April 2, 2024	VSPC comments due
April – May 2024	Public Input Period
July 1, 2024	2024

Thank you

Load Forecast by Zone

				Greater						
Date	Season	Forecast	Ascutney	Burlington	Central	Florence	Highgate	Johnson	Middlebury	Montpelier
	Win	Pol	88.0	249.7	91.3	19.6	47.3	20.2	43.6	158.2
2033	VVIII	Low	74.8	189.9	80.7	19.6	43.2	17.6	39.1	130.7
2033	Sum	Pol	82.9	225.2	68.9	18.7	47.9	14.4	40.3	120.3
	Sulli	Low	75.1	190.1	64.0	18.7	46.2	13.1	38.2	104.8
	Win	Pol	98.0	305.9	101.8	19.6	52.7	22.2	47.6	180.0
2043	VVIII	Low	85.7	249.0	91.5	19.6	48.6	19.7	43.3	154.1
2043	Sum	Pol	91.6	264.7	76.2	18.7	53.0	15.7	43.8	135.9
	Sulfi	Low	84.3	232.0	71.7	18.7	51.3	14.5	41.8	121.5

Date	Season	Forecast	Morrisville	Newport	Rutland	StAlbans	Southern	St Johnsbury	BED	GF	System
2033	Win	Pol	44.5	56.1	134.6	84.9	182.5	38.0	88.4	42.0	1389
	VVIII	Low	39.1	50.0	119.7	76.1	157.2	34.4	69.9	42.0	1184
	Sum	Pol	38.5	46.8	107.1	86.5	131.8	30.3	83.0	52.8	1195
	Sulli	Low	35.8	44.0	99.9	82.4	118.0	28.8	72.5	52.8	1085
2043	Win	Pol	48.7	61.9	145.5	95.6	200.5	41.0	105.7	42.0	1569
	VVIII	Low	43.5	56.0	131.4	86.9	176.7	37.5	88.0	42.0	1374
	Sum	Pol	41.7	51.2	115.7	96.2	145.4	32.6	94.8	52.8	1330
	Sum	Low	39.2	48.6	109.0	92.3	132.6	31.2	85.0	52.8	1226


Peak load forecasts

Policy (Expected forecast)

- Annual sales of HP increase to 17.9k by 2029
- Non-fleet EVs grow to 90% of vehicles by 2043
- Fleet EVs 100% electrification between 2038 and 2045

Low

- Annual sales of HP remain at 10.5k
- Non-fleet EVs grow to 60% of vehicles by 2043
- Fleet EVs constant at 2032
 level through 2043

Transfers

- NY-NE: 0 MW (Peak)
- NY-NE: 100 MW (Daytime off peak, import)
- Highgate: 225 MW at the border
- North-South: 2,000 MW
- West-East: 2,000 MW

System Topology

- ISO-NE identified upgrades included
- Projects with a Vermont section 248 approval included
- No projects past 2028
- Elective Transmission Upgrades not included
 - 1000 MW HVdc at Coolidge substation
 - 400 MW HVdc at New Haven substation

Resources

- Battery energy storage not modeled to determine size/location requirements
- McNeil out of service (peak), In-service (Daytime off peak)
- Summer: Hydro 10%, wind %5; winter: hydro and wind 25%
- Peak: solar PV off, Daytime: DG on at unity power factor

- NERC planning standard TPL-001-5
 - Category P0 (No outages)
 - Category P1 (Outage of one element such as line, trsf, gen)
 - Categories P2 to P7 (Outage of two or more elements)
- ISO-NE Planning Procedure No.3
 - N-0, N-1, N-k, N-1-1
- DU line outage
 - Entire line, breaker to breaker
 - Line end open
 - Radial lines
 - Pick up radial line, close N.O. switch
- Planning Software Used: TARA and PSS/E

